Refine Your Search

Topic

Search Results

Journal Article

Vibro-Impact Analysis of Manual Transmission Gear Rattle and Its Sound Quality Evaluation

2017-03-28
2017-01-0403
Experimental schemes, frequency characteristics, subjective and objective sound quality evaluation and sound quality prediction model establishment of a certain mass-production SUV (Sport Utility Vehicle, SUV) manual transmission gear rattle phenomenon were analyzed in this paper. Firstly, vehicle experiments, including experiment conditions, vibration acceleration sensor and microphone arrangements and especial considerations in experiments, were described in detail. Secondly, through time-frequency analysis, broadband characteristics of manual transmission gear rattle noise were identified and vibro-impact of gear rattle occurs in the frequency range of 450~4000Hz on the vehicle idle condition and the creeping condition. Thirdly, based on bandwidth filtering processing of gear rattle noise, subjective assessment experiments by a paired comparison method were carried out.
Technical Paper

Brake Judder Analysis Based on the Rigid-Flexible Coupling Model of Brake Corner

2016-09-18
2016-01-1933
Brake judder severely affects the riding comfort and safety of vehicle. For the brake corner system, a rigid-flexible coupling model is established based on ADAMS. In the model, brake pads, caliper, anchor and knuckle are flexible bodies, and the contacts between pads and disc and the contacts between pads and caliper are defined in detail. Meanwhile, the vibration acceleration of the brake corner components and the contact forces between disc and pads are used as evaluation index and the evaluation system of brake judder are improved. The analysis results show that the novel model and evaluation system can be used to predict brake judder effectively.
Technical Paper

Analysis of Driver Emergency Steering Behavior Based on the China Naturalistic Driving Data

2016-09-14
2016-01-1872
Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
Journal Article

Lubrication Analysis of Floating Ring Bearings Considering Floating Ring Heat Transfer

2016-04-05
2016-01-0485
Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Technical Paper

Analysis of Gear Rattle Noise and Vibration Characteristics Using Relative Approaches

2016-04-05
2016-01-1121
Noise signals of the driver’s right ear include those of engine, environment, chassis dynamometer, loaded gears and unloaded gears when they are recorded in full vehicle on chassis dynamometer in semi-anechoic room. Gear rattle noise signals of the driver’s right ear caused by unloaded gear pairs can’t be identified or quantified directly. To solve the problems, relative approaches are used to identify and quantify the gear rattle noise signals. Firstly, the rattle noise signals of the driver’s right ear are filtered by human ear characteristic functions and steady noise signals are extracted by regression and smoothing processes. The noise signals are regressed at 200ms interval in the hearing critical frequency bands and smoothed in the flanking frequencies. Then, the noise relative approaches are obtained by subtracting the steady noise signals from the filtered noise signals, which are the transient noise signals of the unloaded gear pairs inducing the rattle noise.
Technical Paper

Gear Rattle Prediction Based on Compliance and Deformation of Gear Contact Points

2016-04-05
2016-01-1094
Generally, the gear rattle noise prediction models are composed of the mass and stiffness elements. The proposals are about the gear inertia or backlash and the shaft inertia or stiffness, but there are many detailed designs in the same inertia, stiffness or backlash conditions. Therefore, these proposals can’t guide detailed designs. These models only investigate the rattle in the rotating degree, and ignore rattle contribution in the radical and axial directions. Those prediction models only consider one or several factors which affect the rattle noise performance. It is difficult to predict the influence of individual factor and multi-factors coupling on the gear rattle noise in a rattle simulation model.
Technical Paper

Finite Element Analysis on Multi-Layer-Steel Cylinder Head Gaskets

2016-04-05
2016-01-1381
Sealing system is an important subsystem of modern high-performance engine. Sealing system reliability directly affects the engine operating conditions. Cylinder head gaskets(CHG) sealing system is of the most importance to the engine sealing system, which is not only responsible for sealing chamber, the cooling fluid and lubricating oil passage, for preventing gas leakage, water leakage and oil leakage, but also responsible for force transferring between cylinder head and cylinder body. Basing on nonlinear solution method, the sealing performance of multi-layer-steel cylinder head gaskets to a gasoline engine is studied with the finite element software ABAQUS. The deformations of the cylinder liners and engine block are also considered.
Technical Paper

Influences of Pad Backplate on Thermo-Mechnical Coupling in Disc Brake

2016-04-05
2016-01-1354
The transient thermo-mechanical coupling dynamic model of ventilated disc brake with asymmetrical outer and inner thickness was established by means of Msc-marc software. In the model, pad backplate is simplified as a rigid surface with the same shape of brake lining and is bonded together with brake lining. Control node is associated with the rigid surface and the equivalent force that replaces the pressure is applied on the control nodes, of which the degrees of freedom in radial and rotational directions are constrained. With distribution characteristics of disc temperature field, normal stress field and lateral thermo-elastic deformation and thickness for the evaluation, the impacts of brake pad constraints on brake thermomechanical coupling characteristics were analyzed. The simulation results show that the brake pad back plate is an important structure in brake thermo-mechanical coupling analysis, which can’t be ignored in simulation computing.
Technical Paper

An Integrated-Electro-Hydraulic Brake System for Active Safety

2016-04-05
2016-01-1640
An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
Technical Paper

Time Delay Predictive and Compensation Method in the Theory of X-in-the-Loop

2016-04-05
2016-01-0031
X-in-the-loop (XiL) framework is a new validation concept for vehicle product development, which integrates different virtual and physical components to improve the development efficiency. With XiL platform the requirements of reproducible test, optimization and validation, in which hardware, equipment and test objects are located in different places, could be realized. In the view of different location and communication form of hardware, equipment and test objects, time delay problem exists in the XiL platform, which could have a negative impact on development and validation process. In this paper, a simulation system of time delay prediction and compensation is founded with the help of BP neural network and RBF neural network. With this simulation system the effect of time delay in a vehicle dynamic model as well as tests of geographically distributed vehicle powertrain system is improved during the validation process.
Journal Article

The Impact of Gear Meshing Nonlinearities on the Vehicle Launch Shudder

2015-04-14
2015-01-0610
During the launch of a car, severe torsional vibration sometimes may occur in its driveline due to somewhat the slipping of the clutch, its intuitive sense for an occupant is the longitudinal vibration of the vehicle, referred to as the launch shudder whose characteristic frequency is from 5 to 25 Hz generally. As the main vibration sources of the driveline and its crucial nonlinear components, the variable stiffness and backlash of the gear meshing are considered, their impacts on the launch shudder are analyzed in this paper. Conformal mapping, finite element method and regression method etc. are the main approaches to calculate the variable meshing stiffness of a gear pair. If this stiffness is get, it can usually be substituted for its approximate analytical expression, just with finite harmonic terms, in Fourier Series form into Ordinary Differential Equations(ODEs) to calculate the vehicle responses with its nonlinearity considered.
Journal Article

Statistical Analysis of Impacts of Surface Topography on Brake Squeal in Disc-Pad System

2014-04-01
2014-01-0027
A disc-pad system is established to study impacts of surface topography on brake squeal from the perspective of statistical analysis. Firstly, surface topographies of brake disc and pad are precisely measured on the scale of micron and are statistically analyzed with a three-dimensional evaluation system. Secondly, the finite element model of brake disc and pad without surface topographies is created and verified through component free modal tests. Thereby the valid brake squeal model for complex modal analysis is built with ABAQUS. An effective method is developed to apply interface topographies to the smooth contact model, which consequently establishes sixty brake squeal models with topographies. Thirdly, impacts of surface topography on brake squeal are studied through comparison and statistical analysis of prediction results with and without topographies.
Journal Article

Combination of Test with Simulation Analysis of Brake Groan Phenomenon

2014-04-01
2014-01-0869
During a car launch, the driving torque from driveline acts on brake disk, and may lead the pad to slip against the disk. Especially with slow brake pedal release, there is still brake torque applies on the disk, which will retard the rotation of disk, and under certain conditions, the disk and pad may stick again, so the reciprocated stick and slip can induce the noise and vibration, which can be transmitted to a passenger by both tactile and aural paths, this phenomenon is defined as brake groan. In this paper, we propose a nonlinear dynamics model of brake for bidirectional, and with 7 Degrees of Freedom (DOFs), and phase locus and Lyapunov Second Method are utilized to study the mechanism of groan. Time-frequency analysis method then is adopted to analyze the simulation results, meanwhile a test car is operated under corresponding conditions, and the test signals are sampled and then processed to acquire the features.
Technical Paper

Development of Composite Brake Pedal Stroke Simulator for Electro-Hydraulic Braking System

2014-04-01
2014-01-0117
A brake pedal stroke simulator for Electro-hydraulic Braking System (EHBS) was developed to ensure the comfort braking pedal feel for the brake-by-wire system. An EHBS with an integrated master cylinder was proposed, and a composite brake pedal stroke simulator was designed for the EHBS, which was comprised of two inline springs and a third parallel one. A normally closed solenoid valve was used to connect the master cylinder booster chamber and the stroke simulator. The suitable brake pedal stroke was achieved by three stages of these springs' compression, whereas the solenoid valve was shutdown to enable mechanical control of the service brakes when electrical faults appeared.
Technical Paper

The Research Progress of Dynamic Photo-Elastic Method

2014-04-01
2014-01-0829
With the rapid development of computing technology, high-speed photography system and image processing recently, in order to meet growing dynamic mechanical engineering problems demand, a brief description of advances in recent research which solved some key problems of dynamic photo-elastic method will be given, including:(1) New digital dynamic photo-elastic instrument was developed. Multi-spark discharge light source was replaced by laser light source which was a high intensity light source continuous and real-time. Multiple cameras shooting system was replaced by high-speed photography system. The whole system device was controlled by software. The image optimization collection was realized and a strong guarantee was provided for digital image processing. (2)The static and dynamic photo-elastic materials were explored. The new formula and process of the dynamic photo-elastic model materials will be introduced. The silicon rubber mold was used without the release agent.
Technical Paper

Development and Evaluation of the Performance Characteristics of a Poly-Disperse Droplet Stream Generator

2013-04-08
2013-01-1617
A specially designed generator has been developed to produce poly-disperse droplet streams: A liquid fuel (n-heptane) is metered to an ultrasonic atomizer to produce droplets, which are then carried and accelerated vertically upwards through a nozzle tube by carrier-air flow. Conditions of the streams at the nozzle exit are modulated by varying the length of nozzle tubes, the fuel and carrier-air flow rate. Optical measurement techniques such as direct photography method, schlieren photography and particle image velocimetry (PIV) are employed to characterize its performance characteristics. Effects of the nozzle tube length, the carrier-air and fuel flow rate are investigated to evaluate the performance of the generator. Longer nozzle tubes provide a better flow guidance for the carrier-air, and tend to generate streams with less and smaller droplets due to the transporting losses.
Technical Paper

Reducing Part Load Pumping Loss and Improving Thermal Efficiency through High Compression Ratio Over-Expanded Cycle

2013-04-08
2013-01-1744
In vehicle application, most of time gasoline engines are part load operated, especially in city traffic, part load operation covers most common operation situations, however part load performances deteriorate due to pumping losses and low thermal efficiency. Many different technologies have been applied to improve part load performances. One of them is to adopt over-expanded (Atkinson/Miller) cycle, which uses late/early intake valve closing (LIVC/EIVC) to reduce pumping losses in part load operation. But over-expanded cycle has an intrinsic drawback in that combustion performance deteriorates due to the decline in the effective compression ratio (CR). Combining with high geometry CR may be an ideal solution, however there is a trade-off between maintaining a high CR for good part load fuel consumption and maintaining optimal combustion phasing at higher load.
Technical Paper

Brake Judder Induced Steering Wheel Vibration: Experiment, Simulation and Analysis

2007-10-07
2007-01-3966
The prevention and control of brake judder and its various negative effects has been a key target of vehicle production. One of the effects is the steering wheel vibration during vehicle braking. Experimental and theoretical investigation into “steering wheel vibration due to brake judder” is extensively presented in this paper. The vehicle road test is carried out under controlled braking conditions. During the test, the accelerations of brake caliper assembly, suspension low and upper control arm, steering arm, tie rod and steering wheel, left and right wheel rotary speed, are measured by a multi-channel data acquisition system. The data processing focuses on order tracking analysis and transfer path analysis to work out the related resonant components. A disc brake assembly, with deliberately designed disc thickness variation and surface run-out combinations, is tested on a brake dynamometer.
Technical Paper

Research into Autoignition Characteristics of Diesel Fuel in a Controllable Active Thermo-Atmosphere

2006-04-03
2006-01-0073
A novel method is applied to analysis the autoignition phenomenon. Experiments on the study of autoignition characteristics of diesel fuel were carried out with a Controllable Active Thermo-Atmosphere Combustor. The results show that the method for autoignition studying of liquid fuel is of feasibility. Autoignition delay time and autoignition height from the nozzle increase with the coflow temperature decreasing and autoignition delay time changes sensitively under lower coflow temperature. Liftoff height of diesel spray flame decreases with the increasing of coflow temperature. Lower temperature causes higher variance of liftoff height. It might be speculated that there are two different mechanisms of flame stabilization that the lower lift-off heights flames are related to a balance between the flow velocity and flame speed while the higher lift-off heights flames are stabilized by the mixture autoignition.
X